Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258455

RESUMO

Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 'folded' state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.


Assuntos
Citotoxicidade Imunológica , Proteínas Tirosina Fosfatases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais , Fosforilação , Proteína Quinase C-theta/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/metabolismo
2.
EMBO Mol Med ; 14(1): e14073, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725941

RESUMO

Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC-dependent antigen presentation and can initiate a robust immune response in the tumor microenvironment (TME). Nevertheless, current NK cell-based immunotherapies have several drawbacks, such as the requirement for ex vivo expansion of modified NK cells, and low transduction efficiency. Furthermore, to date, no clinical trial has demonstrated a significant benefit for NK-based therapies in patients with advanced solid tumors, mainly due to the suppressive TME. To overcome current obstacles in NK cell-based immunotherapies, we describe here a non-viral lipid nanoparticle-based delivery system that encapsulates small interfering RNAs (siRNAs) to gene silence the key intrinsic inhibitory NK cell molecules, SHP-1, Cbl-b, and c-Cbl. The nanoparticles (NPs) target NK cells in vivo, silence inhibitory checkpoint signaling molecules, and unleash NK cell activity to eliminate tumors. Thus, the novel NP-based system developed here may serve as a powerful tool for future NK cell-based therapeutic approaches.


Assuntos
Imunoterapia , Neoplasias , Humanos , Células Matadoras Naturais , Lipossomos , Nanopartículas , Neoplasias/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...